There is a wide variety of applications for optical sensors like laser sensors. They are used in many sectors of industry and research for distance measurement. Particularly in confined spaces non-contacting sensor systems are the best solution.
Laser distance sensors are excellent for the use in engineering for quality control and process monitoring. They are also suitable for automation, chemical industry, medical technology and special machine construction.
In the automobile industry single components are joint to modules, which are assembled to the final product at a production line. Some of these modules have complex geometrical shapes, which are hard to detect with contacting sensors. Laser sensors and other non-contact transducers are well suited to measure these complex constructions. For example, the laser displacement transducer LAS controls if the dimensions of a headlight module comply with the tolerances to later assemble it in the production line. This way inconsistencies are detected and can be avoided in the future. Also these inconsistencies can be rejected easily, otherwise they would slow down the production line later on.
The driving behaviour of a car is a decisive criterion in the purchase decision of a potential costumer. Because of this the driving behaviour of new developments and modifications is thoroughly checked by mean of distance measurement.
For this laser sensors are mounted to the chassis. The sensors high measuring frequency ensure that the number of measured values is sufficient for the analysis. The laser displacement transducer measures the distance between the chassis and the ground. The optical measurement principle of the sensors allows the analysis of the tilt of the car and the road holding.
Level measurements are known as demanding measurement applications. Level measurement and distance measurement are important throughout industry and research. They are essential in the food industry, the plastics industry and the chemical industry. The material of which the level should be measured can be present in the three states of matter: solid, liquid or gas. The level can be measured by means of laser sensors if the material is in the state of liquid or solid. Liquid materials have to be at rest and non-transparent. Solid materials must not be reflective, because this might disturb the opto-electronical element or deflect the laser beam. If these requirements are fulfilled, the level measurement with laser displacement transducers is possible.
Today storehouses are commonly automated logistics centres. Within these logistics centres optical sensors are used more and more frequently. The high-level racks of these centres provide space for several thousand pallets. The goods are automatically controlled from the delivery to storehouse the storage to the delivery from the storehouse.
Modern gripper arms run automatically through narrow corridors and position the goods absolutely precise. At longer distances laser sensors monitor the clearance to position the goods intended space.